
The OERA Maturity Model or,

why ORMs can be good for you

Peter Judge, Consultingwerk

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Peter Judge

▪ Senior Architect at Consultingwerk

▪ Writing 4GL since 1996, working on a variety

of frameworks and applications. More

recently have worked on a lot of integration-y

stuff: Authentication Gateway, HTTP Client,

Web Handlers. Dabble in PASOE migrations.

▪ Active participator in Progress communities,

PUGs and other events

3

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk Software Services Ltd.

4

▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK, USA and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture,

Application Integration

▪ Experts in OpenEdge Application Modernization

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, Progress Software

▪ OpenEdge (ABL, Developer Tools, Database, PASOE, …)

▪ Telerik DevCraft (.NET, Kendo UI, Angular, …), Telerik Reporting

▪ OpenEdge UltraControls (Infragistics .NET)

▪ Telerik Sitefinity CMS (incl. integration with OpenEdge applications)

▪ Kinvey Plattform, NativeScript

▪ Corticon BRMS

▪ WhatsUp Gold infrastructure-, network- and application monitoring

▪ Kemp Loadmaster

▪ …

5

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, related products

▪ Protop Database Monitoring

▪ Combit List & Label

▪ Web frameworks, e.g. Angular

▪ .NET

▪ Java

▪ ElasticSearch, Lucene

▪ Amazon AWS, Azure

▪ DevOps, Docker, Jenkins, ANT, Gradle, JIRA, …

▪ …

6

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ The OpenEdge Reference Architecture

▪ Extensions

▪ Tasks and launching

▪ Snippets and templates

7

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

The OpenEdge Reference Architecture (OERA) defines the general functional categories of components
that comprise an application. It can be used as a high-level blueprint for developing OpenEdge service-oriented
business applications."

▪ A guide only – not prescriptive

▪ Implementations vary,

sometimes wildly

The OpenEdge Reference Architecture (OERA)

8

Presentation

Business Components

Data Access

Data Sources

C
o

m
m

o
n

 In
fra

s
tru

c
tu

re

Enterprise Services

https://community.progress.com/s/question/0D54Q0000819wkqSAA/introduction-to-the-openedge-reference-architecture

https://community.progress.com/s/question/0D54Q0000819wkqSAA/introduction-to-the-openedge-reference-architecture

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Updated as the OpenEdge Application Architecture …

9

https://docs.progress.com/bundle/openedge-modernize-guide-122/page/OpenEdge-application-design.html

https://docs.progress.com/bundle/openedge-modernize-guide-122/page/OpenEdge-deployment-design.html

https://docs.progress.com/bundle/openedge-modernize-guide-122/page/OpenEdge-application-design.html
https://docs.progress.com/bundle/openedge-modernize-guide-122/page/OpenEdge-deployment-design.html

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

The OERA Maturity Model

▪ An opinionated approach
implement the principles of the
OERA, to help future-proofing
of an application
▪ PASOE – or something

compatible – will be around for
a decade or more

▪ "Classic" AppServer was
released in 1999, will be
"Retired" in 2025

▪ Targeted at application
modernization

▪ Focuses on the backend of a
business application

10

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Level 0: Business Services running on an AppServer

▪ Business services exist and run on an AppServer

▪ Written in OOABL or procedural ABL

▪ Have their own API (method/function names and/or parameter definitions)

▪ Data structures are ProDatasets, temp-tables, OOABL objects or primitive

parameters

▪ Clients are ABL, SOAP and/or RESTful

✓ Having a service interface qualifies the application as OERA compliant

▪ Often missing for ABL clients

11

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Guiding principles: separation of concerns

▪ Follow the separation of concerns principle aka the Single Responsibility
Principle (SRP)

▪ Developers group like functions and handle them mentally in the same way

▪ Multiple exceptions to these groups is a sign that a new concern/responsibility
exists and should be 'captured' in common code

▪ Can make code reuse harder

▪ Reusing existing code allows potentially faster migration

▪ Existing code may only be partial duplicates, increasing developer
confusion

▪ Need to balance migration speed and risk vs. increased maintainability

12

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Guiding principles: OOABL

✓ Use OOABL wherever possible

▪ The compiler keeps developers (mostly) honest

▪ Combined with the SRP, we get many smaller programs

✓A more maintainable codebase, especially with automation

✓Fewer sprawling “God programs”

✓Changes are less likely to have large and unforeseen impacts

13

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Level 1: Standard interfaces

▪ Business services must have a single responsibility

▪ E.g. putting a customer on hold should not update the order data directly

▪ Abstract responsibility into standardized interfaces

▪ Standardized interfaces can be for single services (Business Entities),

or more complex services (Business Tasks)

▪ Complex services are typically composed of a number of distinct services

that have their own responsibilities

14

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Service API

▪ Sample business

service interface

15

USING Ccs.BusinessLogic.*.

INTERFACE Ccs.BusinessLogic.IBusinessEntity:

METHOD PUBLIC VOID getDataset (

OUTPUT DATASET-HANDLE phDataset).

METHOD PUBLIC IGetDataResponse getData (poRequest AS IGetDataRequest,

OUTPUT DATASET-HANDLE phDataset).

METHOD PUBLIC IGetResultCountResponse getResultCount (

poRequest AS IGetDataRequest).

INTERFACE Ccs.BusinessLogic.IUpdatableBusinessEntity INHERITS IBusinessEntity:

METHOD PUBLIC Progress.Lang.Object updateData (

INPUT-OUTPUT DATASET-HANDLE phDataset,

poUpdateDataRequest AS IUpdateDataRequest).

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Service interface API

▪ One per client type

▪ ABL

▪ WEB

▪ Handles format

translations, errors,

authorization

16

block-level on error undo, throw.

using Ccs.BusinessLogic.*.

define input parameter pcBusinessEntity as character no-undo.
define input parameter poRequest as IGetDataRequest no-undo.
define output parameter dataset-handle phDataset.
define output parameter poResponse AS IGetDataResponse no-undo.

/* MAIN BLOCK */
define variable oBusinessEntity as IBusinessEntity no-undo.

oBusinessEntity = dynamic-new pcBusinessEntity().

poResponse = oBusinessEntity:getData (poRequest,
output dataset-handle phDataset).

/* Errors are simply thrown back to the ABL client */

finally:
delete object phDataset.

end finally.

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Service interface API

▪ One per client type

▪ ABL

▪ WEB

▪ Handles format

translations, errors,

authorization

17

method override protected integer HandleGet (input poWebRequest as IWebRequest):
assign oResponse = new WebResponse(StatusCodeEnum:OK)

oResponse:ContentType = 'application/json'.

case entry(2, poWebRequest:PathInfo, "/"):
when "Customer" then cBusinessEntity = "Application.BusinessLogic.CustomerBusinessEntity":u.
otherwise undo, throw new AppError("Unknown business entity: " + entry(2, poWebRequest:PathInfo, "/"), 0).

end case.

oBusinessEntity = dynamic-new cBusinessEntity ().
oGetDataRequest = this-object:BuildGetDataRequestFromQuery(poWebRequest).
oGetDataResponse = oBusinessEntity:getData (oGetDataRequest, output dataset-handle hDataset).

hDataset:write-json("JsonObject":u, oDatasetJson, false).
oResponseJson:Add("meta", this-object:BuildJsonFromGetDataResponse(oGetDataResponse)).
oResponseJson:Add("data", oDatasetJson).
oResponse:Entity = oResponseJson.

this-object:WriteResponse(oResponse).

return 0.

/* Errors must be processed and formatted before being returned to the client */
catch oError as Progress.Lang.Error:

oResponse:StatusCode = integer(StatusCodeEnum:InternalServerError).
oResponseJson = new JsonObject().
oResponseJson:Add("error", oError:GetMessage(1)).
this-object:WriteResponse(oResponse).

end catch.
finally:

delete object hDataset.
end finally.

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Demo

▪ Service API

▪ Business entities

▪ Service interfaces

▪ Read.p

▪ Handleget

▪ etc

18

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Level 2: Separate data access from business entities

▪ A Business Entity is considered to have a logical data model,

represented as temp-tables and ProDataSets

▪ The data access component is responsible for

▪ Mapping the logical model to the physical (eg temp-table field to db field)

▪ Populating temp-table from physical storage

▪ Committing temp-table data to physical storage

▪ The Data Access object is a black box to the Business Entity

▪ For example, may have support for multi-tenancy

▪ Allows for plug and play for data, including for test mocking

▪ OERA defines a distinct Data Source layer, but that's generally overkill
19

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Level 3 : Separate validation routines

▪ A Business Entity MUST always perform its own validation (trust but

verify)

▪ Validation may include ensuring that

▪ A field has a value

▪ Values are in a particular range

▪ If one field has a value, another field has a related value (or empty)

▪ Validation logic will

▪ Be reusable by multiple business services

▪ Have its own set of interfaces

▪ Follow the separation of concerns
20

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Example: address validation routines

▪ Multiple Business Entities have one or more addresses

▪ Orders: shipping and billing

▪ Customer: postal and physical

▪ When updating an address, the same validation should apply in all

cases

▪ We need one class whose concern is validating the Order

▪ Called once per record in the Business Entity

▪ One class whose concern is validating an address

▪ This will be called once for each address in an order, so once for shipping

address and once for billing address
21

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Demo

▪ Validation

22

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Level 4 : Object model for data

▪ Temp-tables and ProDataSets are handle-based

▪ Reference-passing can be tricky

▪ Compile checks operate on the whole data structure: cannot define a

temp-table as having multiple components

▪ Level 4 defines the temp-table and ProDataSet data models as a set of

OOABL classes and interfaces

▪ Not replacements for the business services – these are typically used

to populate the model objects … in some ways simply "syntactic sugar"

for working with relational ABL data in temp-tables

24

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Level 4 : Object model for data

▪ Implementation choices include classes that

▪ Are wrappers around the complete data structures

▪ Are wrappers around individual rows

▪ Copy values from individual rows

▪ Are collections of row-copy classes

▪ The ABL is comparatively powerful when working with relational

structures, so the wrappers is our recommended option

25

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Demo

▪ SCL dataset, table model

26

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Conclusion

▪ The OERA Maturity Model provides opinionated approaches to

implementing the server-side OERA components, and provides a

mechanism to evaluate where further improvements can be found in an

application

▪ Whitepaper at

https://www.consultingwerk.com/news/blog/consultingwerk/2024/02/23/the

-consultingwerk-oera-maturity-model

28

https://www.consultingwerk.com/news/blog/consultingwerk/2024/02/23/the-consultingwerk-oera-maturity-model
https://www.consultingwerk.com/news/blog/consultingwerk/2024/02/23/the-consultingwerk-oera-maturity-model

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

PUG Challenge 2024

▪ Europe: September 18th – 20th in Prague, CZ

▪ Americas: 29 Sept – 2 Oct, Waltham, MA

29

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

Questions

30

Übersicht

© 2024 Consultingwerk Software Services Ltd. All rights reserved.

	Slide 1: The OERA Maturity Model or, why ORMs can be good for you
	Slide 3: Peter Judge
	Slide 4: Consultingwerk Software Services Ltd.
	Slide 5: Services Portfolio, Progress Software
	Slide 6: Services Portfolio, related products
	Slide 7: Agenda
	Slide 8: The OpenEdge Reference Architecture (OERA)
	Slide 9: Updated as the OpenEdge Application Architecture …
	Slide 10: The OERA Maturity Model
	Slide 11: Level 0: Business Services running on an AppServer
	Slide 12: Guiding principles: separation of concerns
	Slide 13: Guiding principles: OOABL
	Slide 14: Level 1: Standard interfaces
	Slide 15: Service API
	Slide 16: Service interface API
	Slide 17: Service interface API
	Slide 18: Demo
	Slide 19: Level 2: Separate data access from business entities
	Slide 20: Level 3 : Separate validation routines
	Slide 21: Example: address validation routines
	Slide 22: Demo
	Slide 24: Level 4 : Object model for data
	Slide 25: Level 4 : Object model for data
	Slide 26: Demo
	Slide 28: Conclusion
	Slide 29: PUG Challenge 2024
	Slide 30: Questions
	Slide 31

