
Implementing and using 

the Decorator pattern in 

ABL



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Lutz Fechner

▪ Project Consultant at Consultingwerk

Project- and Delivery Management

„Special“ projects / non ABL

▪ 20+ years experience in C# (Framework and 

Core), Java, C++, C, JavaScript, ABL

▪ Full Stack Development

eProcurement Systems 

Catalog Search Engines

2



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk Software Services Ltd.

3

▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK, USA and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture, 

Application Integration

▪ Experts in OpenEdge Application Modernization



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, Progress Software

▪ OpenEdge (ABL, Developer Tools, Database, PASOE, …)

▪ Telerik DevCraft (.NET, Kendo UI, Angular, …), Telerik Reporting

▪ OpenEdge UltraControls (Infragistics .NET)

▪ Telerik Sitefinity CMS (incl. integration with OpenEdge applications)

▪ Kinvey Plattform, NativeScript

▪ Corticon BRMS

▪ Whatsup Gold infrastructure-, network- and application monitoring

▪ Kemp Loadmaster

▪ …

4



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, related products

▪ Protop Database Monitoring

▪ Combit List & Label

▪ Web frameworks, e.g. Angular

▪ .NET

▪ Java

▪ ElasticSearch, Lucene

▪ Amazon AWS, Azure 

▪ DevOps, Docker, Jenkins, ANT, Gradle, JIRA, …

▪ …

5



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ Software design patterns

▪ General

▪ Decorator

▪ Example



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Software Design Patterns

▪ Well known “ways of doing”, solving common, reoccurring problems

▪ Easier to understand und maintain clean code

▪ Prevents reinventing the wheel and “too creative” code



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Software Design Patterns

▪ Popular through the GoF (Gang of Four)
▪ Erich Gamma (IBM/Rational/Microsoft – Developer of Eclipse, Junit and VS Code)

▪ Richard Helm (IBM/Boston Consulting)

▪ Ralph Johnson (worked on Smalltalk)

▪ John Vlissides (IBM)

▪ Examples: Factory, Builder, Singleton, Facade, Adapter, Iterator, Lazy 

Initialization, and many more….



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Decorator pattern

In object-oriented programming, the 

decorator pattern is a design pattern 

that allows behavior to be added to 

an individual object, dynamically, 

without affecting the behavior of other 

objects from the same class. 

https://en.wikipedia.org/wiki/Decorator_pattern

https://en.wikipedia.org/wiki/Decorator_pattern


Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Decorator pattern

▪ Allows functionality to be divided by concern (Single Responsibility)

▪ Allows extension without modification (Open Closed Principle)

▪ This is the actual decoration

▪ Flexible, efficient way of extending an object without creating a new 

object

▪ No Casting, Extending or Overwrites needed 



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Decorator pattern

▪ Interface, Decorator(s), Decorated

▪ Decorator implementes Interface of the to be decorated

▪ Decorator holds reference to the decorated object (Wrapper)



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Example

▪ We want to a class to represent a House

▪ …and want to know how much Energy it consumes over the year

▪ How does that change if we change something on the House?

▪ We want to change that at Runtime!

▪ Not at compile time.



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Example

▪ Define an Interface

▪ Define your Basic Class



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Example

▪ Define your Decorators

Reference to the 

decorated object

Same Interface

Forward to decorated Object

Decoration/Specialization



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Example

▪ Use a Decorator (or multiple) at runtime to change behavior



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Worse Example

▪ Use a derived class that is specialized

▪ Each special IHouse implementation would be a class

▪ You cannot dynamically change behavior



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Conclusion

▪ Decorator pattern allows us to dynamically (ie at runtime) add behavior 
to objects

▪ This can be chained to add more behavior

▪ Avoid creation of “special” classes at compile time

▪ In the Example you can mix and match Decorators to get the behavior as 
desired.

▪ Using Inheritance to specialize you would have created a class per 
specialization. 3 Variants = 2³ classes to represent the options instead of 3 
decorators only.



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Additional info

▪ More complex examples are available at https://github.com/4gl-

fanatics/airplane-seat-patterns

▪ The Using the Factory Pattern in OOABL: How, when and why session 

is on Thursday / 16:30 in Room 525 . Come see how we improve 

building of these decorated objects.

https://github.com/4gl-fanatics/airplane-seat-patterns
https://github.com/4gl-fanatics/airplane-seat-patterns


Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 19

lutz.fechner@consultingwerk.de



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 20


	Folie 1: Implementing and using the Decorator pattern in ABL
	Folie 2: Lutz Fechner
	Folie 3: Consultingwerk Software Services Ltd.
	Folie 4: Services Portfolio, Progress Software
	Folie 5: Services Portfolio, related products
	Folie 6: Agenda
	Folie 7: Software Design Patterns
	Folie 8: Software Design Patterns
	Folie 9: Decorator pattern
	Folie 10: Decorator pattern
	Folie 11: Decorator pattern
	Folie 12: Example
	Folie 13: Example
	Folie 14: Example
	Folie 15: Example
	Folie 16: Worse Example
	Folie 17: Conclusion
	Folie 18: Additional info
	Folie 19
	Folie 20

