
Using the Factory Pattern in

OOABL: How, when and why

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Lutz Fechner

▪ Project Consultant at Consultingwerk

Project- and Delivery Management

„Special“ projects / non ABL

▪ 20+ years experience in C# (Framework and

Core), Java, C++, C, JavaScript, ABL

▪ Full Stack Development

eProcurement Systems

Catalog Search Engines

2

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk Software Services Ltd.

▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK, USA and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture,

Application Integration

▪ Experts in OpenEdge Application Modernization

3

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, Progress Software

▪ OpenEdge (ABL, Developer Tools, Database, PASOE, …)

▪ Telerik DevCraft (.NET, Kendo UI, Angular, …), Telerik Reporting

▪ OpenEdge UltraControls (Infragistics .NET)

▪ Telerik Sitefinity CMS (incl. integration with OpenEdge applications)

▪ Kinvey Plattform, NativeScript

▪ Corticon BRMS

▪ Whatsup Gold infrastructure-, network- and application monitoring

▪ Kemp Loadmaster

▪ …

4

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, related products

▪ Protop Database Monitoring

▪ Combit List & Label

▪ Web frameworks, e.g. Angular

▪ .NET

▪ Java

▪ ElasticSearch, Lucene

▪ Amazon AWS, Azure

▪ DevOps, Docker, Jenkins, ANT, Gradle, JIRA, …

▪ …

5

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Recap from yesterday

▪ Patterns in general

▪ Decorator pattern

6

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Software Design Patterns

▪ Well known “ways of doing”, solving common, reoccurring problems

▪ Easier to understand und maintain clean code

▪ Prevents reinventing the wheel and “too creative” code

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Decorator pattern

▪ Allows functionality to be divided by concern (Single Responsibility)

▪ Allows extension without modification (Open Closed Principle)

▪ This is the actual decoration

▪ Flexible, efficient way of extending an object without creating a new

object

▪ No Casting, Extending or Overwrites needed

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Decorator pattern

▪ Interface, Decorator(s), Decorated

▪ Decorator implementes Interface of the to be decorated

▪ Decorator holds reference to the decorated object (Wrapper)

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Software Design Patterns

▪ Popular through the GoF (Gang of Four)
▪ Erich Gamma (IBM/Rational/Microsoft – Developer of Eclipse, Junit and VS Code)

▪ Richard Helm (IBM/Boston Consulting)

▪ Ralph Johnson (worked on Smalltalk)

▪ John Vlissides (IBM)

▪ Examples: Factory, Builder, Singleton, Facade, Adapter, Iterator, Lazy

Initialization, and many more….

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ Example

▪ Factory patterns

▪ Fluent Interface

▪ Examples

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Example

▪ We want to create houses

▪ With different capabilities

▪ With Insulation

▪ With Solar

▪ With Heat Pump

▪ A house may have one or more of these capabilities

▪ Capabilities can be upgraded over the lifetime of a house

▪ Different houses have different features in place

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

How do we specify the capabilities?

▪ Constructor arguments

▪ Does allow required values to be set

▪ Optional values may be set

▪ Can end up with vary many constructors, with very many parameter
combinations

▪ Can end up with overly-broad constructors, with too many parameters for the
required capabilities

Which constructor is a developer supposed to call?

▪ Settable properties, public methods

▪ Caller must somehow know that they are supposed to call these

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Bad Example

▪ Constructor arguments

▪ Not really comprehensive (What does the values given mean, and why?)

▪ Intellisense the parameters to at lease see what they might mean.

▪ Need a parameter more for some processing inside the class?

▪ New Constructor with meaningful default values

▪ Change all code pieces that used the old one

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Introducing Factories & Builders

▪ Abstract factory Provide an interface for creating families of related or

dependent objects without specifying their concrete classes

▪ Builder Separate the construction of a complex object from its

representation, allowing the same construction process to create

various representations

▪ Factory method Define an interface for creating a single object, but let

subclasses decide which class to instantiate. Factory Method lets a

class defer instantiation to subclasses

https://en.wikipedia.org/wiki/Abstract_factory_pattern

https://en.wikipedia.org/wiki/Builder_pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Factory_method_pattern
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Factory_method_pattern

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Factories & builders

CLASS Consultingwerk.Demo.Factory.HouseBuilder
 IMPLEMENTS IHouseBuilder ABSTRACT
 :

DEFINE PUBLIC PROPERTY House AS IHouse NO-UNDO
 GET():
 RETURN THIS-OBJECT:GetInstance().
 END GET.

METHOD ABSTRACT PROTECTED IHouse GetInstance().

METHOD STATIC PUBLIC IHouseBuilder Build (pcHouseCategory AS CHARACTER):
 IF pcHouseCategory = "modern" THEN
 RETURN NEW ModernHouseBuilder().
 ELSE
 RETURN NEW DefaultHouseBuilder().
 END METHOD.

END CLASS.

Abstract Factory

Factory method

Builders

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Factories & builders

▪ Developer doesn’t need to know specific type that is created

▪ Factory might have more meaningful method names

▪ A Constructor is always called like the class name

▪ You can change the Factory providing new implementations without

having to change the client code

▪ Abstract Factory is kind of magic black box. You don’t know who builds

you what specific type.

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Abstract Factory usage

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

The Builder builds the object for you

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Classical Builders

▪ Help to create complex objects without long parameter lists in
telescopic constructors (see the bad example)

▪ Create object in steps:

▪ Doesn’t fit all use cases (Not even the one in our example here ☺)

▪ Don’t use for immutable objects (Can’t be changed at runtime)

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Fluent interface

A fluent interface is an object-oriented API whose design relies extensively on

method chaining. Its goal is to increase code legibility by creating a domain-

specific language (DSL).

https://en.wikipedia.org/wiki/Fluent_interface

using OpenEdge.Net.HTTP.*.

define variable oRequest as IHttpRequest no-undo.

oRequest = RequestBuilder:Post("https://example.com/", oJsonData)
:ContentType("application/json")
:AcceptJson()
:SetHeader("X-API-Key", "abc123")
:Request.

https://en.wikipedia.org/wiki/Fluent_interface
https://en.wikipedia.org/wiki/Fluent_interface

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Fluent House Builder

This is the trick!

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Fluent interface: example

Configure your object as

needed.

Use variables instead of

hard-coded TRUE to

dynamically build the

right thing for you.

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Conclusion

▪ Never write a NEW again! Factories and builders give us a single-

responsibility class for instantiating objects

▪ Application developers don't need to think about any complexities of

constructing objects

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Additional info

▪ More examples are available at

https://github.com/4gl-fanatics/airplane-seat-patterns

https://github.com/4gl-fanatics/airplane-seat-patterns

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 26

lutz.fechner@consultingwerk.de

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 27

▪ We have a OpenEdge quiz running at our booth or available at

consultingwerk.com/quiz

▪ Callenge your OpenEdge knowledge to earn a chance to win an

Amazon Echo Studio, Echo or Echo Spot

▪ Best entries will be presented on Friday

here at the PUG!

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 28

	Folie 1: Using the Factory Pattern in OOABL: How, when and why
	Folie 2: Lutz Fechner
	Folie 3: Consultingwerk Software Services Ltd.
	Folie 4: Services Portfolio, Progress Software
	Folie 5: Services Portfolio, related products
	Folie 6: Recap from yesterday
	Folie 7: Software Design Patterns
	Folie 8: Decorator pattern
	Folie 9: Decorator pattern
	Folie 10: Software Design Patterns
	Folie 11: Agenda
	Folie 12: Example
	Folie 13: How do we specify the capabilities?
	Folie 14: Bad Example
	Folie 15: Introducing Factories & Builders
	Folie 16: Factories & builders
	Folie 17: Factories & builders
	Folie 18: Abstract Factory usage
	Folie 19: The Builder builds the object for you
	Folie 20: Classical Builders
	Folie 21: Fluent interface
	Folie 22: Fluent House Builder
	Folie 23: Fluent interface: example
	Folie 24: Conclusion
	Folie 25: Additional info
	Folie 26
	Folie 27
	Folie 28

