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Peter Judge

▪ Senior Architect at Consultingwerk

▪ Writing 4GL since 1996, working on a variety 

of frameworks and applications. More 

recently have worked on a lot of integration-y 

stuff: Authentication Gateway, HTTP Client, 

Web Handlers. Dabble in PASOE migrations.

▪ Active participator in Progress communities, 

PUGs and other events
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Consultingwerk Software Services Ltd.
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▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK, USA and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture, 

Application Integration

▪ Experts in OpenEdge Application Modernization
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Services Portfolio, Progress Software

▪ OpenEdge (ABL, Developer Tools, Database, PASOE, …)

▪ Telerik DevCraft (.NET, Kendo UI, Angular, …), Telerik Reporting

▪ OpenEdge UltraControls (Infragistics .NET)

▪ Telerik Sitefinity CMS (incl. integration with OpenEdge applications)

▪ Kinvey Plattform, NativeScript

▪ Corticon BRMS

▪ Whatsup Gold infrastructure-, network- and application monitoring

▪ Kemp Loadmaster

▪ …
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Services Portfolio, related products

▪ Protop Database Monitoring

▪ Combit List & Label

▪ Web frameworks, e.g. Angular

▪ .NET

▪ Java

▪ ElasticSearch, Lucene

▪ Amazon AWS, Azure 

▪ DevOps, Docker, Jenkins, ANT, Gradle, JIRA, …

▪ …
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Agenda

▪ Software design patterns

▪ General 

▪ Inheritance gets ugly

▪ Decorator 

▪ Adapter
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Example

▪ We want to a class to represent a House

…and want to know how much Energy it consumes over the year

▪ How does that change if we change something on the house?

▪ We want to change that at Runtime!

▪ Not at compile time

▪ Houses may have solar panels, insulation, a battery, heat pumps, etc

▪ Not all houses have all of these

▪ Some houses may have multiple

▪ Capabilities can be upgraded over the lifetime of a house
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Implementation Options
class BasicHouse implements IHouse

class SolarHouse inherits BasicHouse 

class HeatPumpHouse inherits BasicHouse 

class InsulatedHouse inherits BasicHouse 

class BatteryBackupHouse inherits BasicHouse

class SolarInsulatedHouse inherits BasicHouse 
class SolarHeatPumpInsulatedHouse inherits BasicHouse 
class SolarHeatPumpInsulatedBatteryHouse inherits BasicHouse
class SolarHeatPumpBatteryHouse inherits BasicHouse
class SolarBatteryHouse inherits BasicHouse

▪ Challenge is supporting zero, 
one or more of these optional 
capabilities

 n capabilities = 2
n
 

combinations

▪ A new capability (wind?) 
means a proliferation of 
classes

▪ Potential duplication of 
implementations
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Software Design Patterns

▪ Well known “ways of doing” for solving common, recurring problems

▪ Easier to understand and maintain clean code

▪ Prevents reinventing the wheel and “too creative” code
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Software Design Patterns

▪ Popular through the GoF (Gang of Four)
▪ Erich Gamma (IBM/Rational/Microsoft – Developer of Eclipse, Junit and VS Code)

▪ Richard Helm (IBM/Boston Consulting)

▪ Ralph Johnson (worked on Smalltalk)

▪ John Vlissides (IBM)

▪ Examples: Factory, Builder, Singleton, Facade, Adapter, Iterator, Lazy 

Initialization, and many more….
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Decorator pattern

In object-oriented programming, the 

decorator pattern is a design pattern 

that allows behavior to be added to 

an individual object, dynamically, 

without affecting the behavior of other 

objects from the same class. 

https://en.wikipedia.org/wiki/Decorator_pattern 

https://en.wikipedia.org/wiki/Decorator_pattern
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Decorator pattern

▪ Allows functionality to be divided by concern (Single Responsibility)

▪ Allows extension without modification (Open Closed Principle)

▪ This is the actual decoration

▪ Flexible, efficient way of extending an object without creating a new 

object

▪ No Casting, Extending or Overwrites needed 
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Implementing the Decorator pattern

Building blocks

1. Interface describing common functionality

2. A Decorator class, usually abstract to hold the decorated object

3. Concrete decorator classes 

for each bit of additional 

functionality
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class HouseDecorator

  abstract

  implements IHouse:

  define variable oDecoratedHouse as IHouse no-undo.

  constructor public HouseDecorator(poHouse as IHouse):

    Assert:NotNull(poHouse).

    oDecoratedHouse = poHouse.

  end constructor.

  method public integer GetEndEnergyConsumption():

    return oDecoratedHouse:GetEndEnergyConsumption().

  end method.

end class.

Abstract HouseDecorator

Implements the IHouse interface

Class is defined as ABSTRACT

Private variable to hold the instance 

being decorated. This is also an IHouse

Decorator IHouse members simply call 

corresponding PUBLIC members on 

decorated instance

Decorated instance set via constructor
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class HeatPumpHouse
  inherits HouseDecorator:

  // Coefficient of Performance - How much energy returned for energy put in
  define public property CoefficientOfPerformance as integer no-undo
  get.
  protected set.

  constructor public HeatPumpHouse(pHouse as IHouse):
    super(pHouse).

    this-object:CoefficientOfPerformance = 4.
  end constructor.

  method override public integer GetEndEnergyConsumption( ):

    return integer(super:GetEndEnergyConsumption() / CoefficientOfPerformance).

  end method.

end class.

Concrete HouseDecorator
Inherits from HouseDecorator

Passes the House being decorated to 

the abstract parent 

Modifies / extends standard House 

behaviour
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Building objects

1. Build an object that will be 
decorated

2. Pass that into a decorator

3. Optionally pass the 
decorator into another 
decorator

4. Call methods on the 
IHouse

▪ This is the outermost 
decorator

define variable oMyHouse as IHouse no-undo.

/* Base house (the one to decorate) */
oMyHouse = new BasicHouse().

/* Add Insulation */
oMyHouse = new InsulatedHouse(oMyHouse).

/* And a Heat Pump */
oMyHouse = new HeatPumpHouse(oMyHouse).

/* It's still an IHouse instance */
oMyHouse:GetEndEnergyConsumption().  // 5000w
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Demo – Decorators, 
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define variable oMyHouse as IHouse no-undo.

/* Base house (the one to decorate) */
oMyHouse = new BasicHouse().

/* Add Insulation */
oMyHouse = new InsulatedHouse(oMyHouse).

/* And a Heat Pump */
oMyHouse = new HeatPumpHouse(oMyHouse).

/* It's still an IHouse instance */
oMyHouse:GetEndEnergyConsumption().  // 5000w

message cast(oMyHouse, InsulatedHouse):RValue.    /* !! RUNTIME ERROR !! */

message 'type-of IHouse? ' type-of(oMyHouse, IHouse).   /* true */
message 'type-of InsulatedHouse? ' type-of(oMyHouse, InsulatedHouse). /* false */
message 'TypeName ' oMyHouse :GetClass():TypeName.   /* HeatPumpHouse */

Accessing other capabilities 
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define variable oMyHouse as IHouse no-undo.

/* Base house (the one to decorate) */
oMyHouse = new BasicHouse().

/* And a Heat Pump */
oMyHouse = new HeatPumpHouse(oMyHouse).

/* Add Insulation */
oMyHouse = new InsulatedHouse(oMyHouse).

/* It's still an IHouse instance */
oMyHouse:GetEndEnergyConsumption().  // 5000w

message cast(oMyHouse, InsulatedHouse):RValue.    /* 40 */

message 'type-of IHouse? ' type-of(oMyHouse, IHouse).   /* true */
message 'type-of InsulatedHouse? ' type-of(oMyHouse, InsulatedHouse). /* true*/
message 'TypeName ' oMyHouse :GetClass():TypeName.   /* InsulatedHouse */

Accessing other capabilities 
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Using the Adapter Pattern

▪ Can't rely on TYPE-OF() or Progress.Lang.Class:IsA() since we 

are dealing with >1 class

▪  TYPE-OF() will tell only us the outermost layer of the onion … we need to 

inspect all of the layers somehow

The adapter pattern is a software design pattern (also known as wrapper, an 

alternative naming shared with the decorator pattern) that allows the 

interface of an existing class to be used as another interface

https://en.wikipedia.org/wiki/Adapter_pattern 

https://en.wikipedia.org/wiki/Adapter_pattern
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Implement OpenEdge.Core.IAdaptable
class HouseDecorator 
  abstract
  implements IHouse,
             OpenEdge.Core.IAdaptable :
  
  method public Progress.Lang.Object GetAdapter(pAdaptTo as Progress.Lang.Class):
   /* Does the current decorator implement or inherit from the requested type? */
  if this-object:GetClass():IsA(pAdaptTo) then
    return this-object.

    if valid-object(oDecoratedHouse) then do:
    /* Does the decorated house implement or inherit the requested type? */
   if oDecoratedHouse:GetClass():IsA(pAdaptTo) then
     return oDecoratedHouse.

      /* Is the decorated house itself an Adapter? */
      if type-of(oDecoratedHouse, OpenEdge.Core.IAdaptable) then
        return cast(oDecoratedHouse, OpenEdge.Core.IAdaptable):GetAdapter(pAdaptTo).
    end.

    return ?.
  end method.

end class.
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define variable oAdapter as Progress.Lang.Object no-undo.
define variable oMyHouse as IHouse no-undo.

/* Base house (the one to decorate) */
oMyHouse = new BasicHouse().

/* Add Insulation */
oMyHouse = new InsulatedHouse(oMyHouse).

/* And a Heat Pump */
oMyHouse = new HeatPumpHouse(oMyHouse).

/* It's still an IHouse instance */
oMyHouse:GetEndEnergyConsumption().  // 5000w

message 'type-of IHouse? ' type-of(oMyHouse, IHouse).  /* type-of IHouse? true */
message 'TypeName ' oMyHouse :GetClass():TypeName.   /* TypeName HeatPumpHouse */

if type-of(oMyHouse, IAdaptable) then do:
  oAdapter = cast(oMyHouse, IAdaptable):GetAdapter(get-class(InsulatedHouse)).
  if valid-object(oAdapter) then
    message cast(oAdapter, InsulatedHouse):RValue.   /* works! */
end.

Accessing other capabilities via an adapter
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Demo

▪ Run-adapter.p
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Conclusion

▪ Decorator pattern allows us to dynamically (ie at runtime) add 
behaviour to objects

▪ Streamline complex object hierarchies when using multiple interfaces

▪ Construction of decorated objects can be verbose (hint: come and see the 
"Factories" session

▪ The adapter pattern allows us to ask an object what it is capable of 
doing

▪ … and lets us ignore how that's implemented in the object (inheritance or 
decorator or …)
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Additional info

▪ Code shown today is available at https://github.com/4gl-fanatics/house-

energy-patterns 

▪ The Using the Factory Pattern in OOABL: How, when and why session 

is on Tuesday, 14 Nov / 16:40. Come see how we improve building of 

these decorated objects

https://github.com/4gl-fanatics/house-energy-patterns
https://github.com/4gl-fanatics/house-energy-patterns
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peter.judge@consultingwerk.com
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