
Implementing and using

the Decorator pattern in

ABL

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Peter Judge

▪ Senior Architect at Consultingwerk

▪ Writing 4GL since 1996, working on a variety

of frameworks and applications. More

recently have worked on a lot of integration-y

stuff: Authentication Gateway, HTTP Client,

Web Handlers. Dabble in PASOE migrations.

▪ Active participator in Progress communities,

PUGs and other events

2

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk Software Services Ltd.

3

▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK, USA and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture,

Application Integration

▪ Experts in OpenEdge Application Modernization

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, Progress Software

▪ OpenEdge (ABL, Developer Tools, Database, PASOE, …)

▪ Telerik DevCraft (.NET, Kendo UI, Angular, …), Telerik Reporting

▪ OpenEdge UltraControls (Infragistics .NET)

▪ Telerik Sitefinity CMS (incl. integration with OpenEdge applications)

▪ Kinvey Plattform, NativeScript

▪ Corticon BRMS

▪ Whatsup Gold infrastructure-, network- and application monitoring

▪ Kemp Loadmaster

▪ …

4

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, related products

▪ Protop Database Monitoring

▪ Combit List & Label

▪ Web frameworks, e.g. Angular

▪ .NET

▪ Java

▪ ElasticSearch, Lucene

▪ Amazon AWS, Azure

▪ DevOps, Docker, Jenkins, ANT, Gradle, JIRA, …

▪ …

5

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ Software design patterns

▪ General

▪ Inheritance gets ugly

▪ Decorator

▪ Adapter

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Example

▪ We want to a class to represent a House

…and want to know how much Energy it consumes over the year

▪ How does that change if we change something on the house?

▪ We want to change that at Runtime!

▪ Not at compile time

▪ Houses may have solar panels, insulation, a battery, heat pumps, etc

▪ Not all houses have all of these

▪ Some houses may have multiple

▪ Capabilities can be upgraded over the lifetime of a house

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Implementation Options
class BasicHouse implements IHouse

class SolarHouse inherits BasicHouse

class HeatPumpHouse inherits BasicHouse

class InsulatedHouse inherits BasicHouse

class BatteryBackupHouse inherits BasicHouse

class SolarInsulatedHouse inherits BasicHouse
class SolarHeatPumpInsulatedHouse inherits BasicHouse
class SolarHeatPumpInsulatedBatteryHouse inherits BasicHouse
class SolarHeatPumpBatteryHouse inherits BasicHouse
class SolarBatteryHouse inherits BasicHouse

▪ Challenge is supporting zero,
one or more of these optional
capabilities

 n capabilities = 2
n

combinations

▪ A new capability (wind?)
means a proliferation of
classes

▪ Potential duplication of
implementations

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Software Design Patterns

▪ Well known “ways of doing” for solving common, recurring problems

▪ Easier to understand and maintain clean code

▪ Prevents reinventing the wheel and “too creative” code

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Software Design Patterns

▪ Popular through the GoF (Gang of Four)
▪ Erich Gamma (IBM/Rational/Microsoft – Developer of Eclipse, Junit and VS Code)

▪ Richard Helm (IBM/Boston Consulting)

▪ Ralph Johnson (worked on Smalltalk)

▪ John Vlissides (IBM)

▪ Examples: Factory, Builder, Singleton, Facade, Adapter, Iterator, Lazy

Initialization, and many more….

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Decorator pattern

In object-oriented programming, the

decorator pattern is a design pattern

that allows behavior to be added to

an individual object, dynamically,

without affecting the behavior of other

objects from the same class.

https://en.wikipedia.org/wiki/Decorator_pattern

https://en.wikipedia.org/wiki/Decorator_pattern

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Decorator pattern

▪ Allows functionality to be divided by concern (Single Responsibility)

▪ Allows extension without modification (Open Closed Principle)

▪ This is the actual decoration

▪ Flexible, efficient way of extending an object without creating a new

object

▪ No Casting, Extending or Overwrites needed

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Implementing the Decorator pattern

Building blocks

1. Interface describing common functionality

2. A Decorator class, usually abstract to hold the decorated object

3. Concrete decorator classes

for each bit of additional

functionality

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

class HouseDecorator

 abstract

 implements IHouse:

 define variable oDecoratedHouse as IHouse no-undo.

 constructor public HouseDecorator(poHouse as IHouse):

 Assert:NotNull(poHouse).

 oDecoratedHouse = poHouse.

 end constructor.

 method public integer GetEndEnergyConsumption():

 return oDecoratedHouse:GetEndEnergyConsumption().

 end method.

end class.

Abstract HouseDecorator

Implements the IHouse interface

Class is defined as ABSTRACT

Private variable to hold the instance

being decorated. This is also an IHouse

Decorator IHouse members simply call

corresponding PUBLIC members on

decorated instance

Decorated instance set via constructor

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

class HeatPumpHouse
 inherits HouseDecorator:

 // Coefficient of Performance - How much energy returned for energy put in
 define public property CoefficientOfPerformance as integer no-undo
 get.
 protected set.

 constructor public HeatPumpHouse(pHouse as IHouse):
 super(pHouse).

 this-object:CoefficientOfPerformance = 4.
 end constructor.

 method override public integer GetEndEnergyConsumption():

 return integer(super:GetEndEnergyConsumption() / CoefficientOfPerformance).

 end method.

end class.

Concrete HouseDecorator
Inherits from HouseDecorator

Passes the House being decorated to

the abstract parent

Modifies / extends standard House

behaviour

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Building objects

1. Build an object that will be
decorated

2. Pass that into a decorator

3. Optionally pass the
decorator into another
decorator

4. Call methods on the
IHouse

▪ This is the outermost
decorator

define variable oMyHouse as IHouse no-undo.

/* Base house (the one to decorate) */
oMyHouse = new BasicHouse().

/* Add Insulation */
oMyHouse = new InsulatedHouse(oMyHouse).

/* And a Heat Pump */
oMyHouse = new HeatPumpHouse(oMyHouse).

/* It's still an IHouse instance */
oMyHouse:GetEndEnergyConsumption(). // 5000w

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Demo – Decorators,

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

define variable oMyHouse as IHouse no-undo.

/* Base house (the one to decorate) */
oMyHouse = new BasicHouse().

/* Add Insulation */
oMyHouse = new InsulatedHouse(oMyHouse).

/* And a Heat Pump */
oMyHouse = new HeatPumpHouse(oMyHouse).

/* It's still an IHouse instance */
oMyHouse:GetEndEnergyConsumption(). // 5000w

message cast(oMyHouse, InsulatedHouse):RValue. /* !! RUNTIME ERROR !! */

message 'type-of IHouse? ' type-of(oMyHouse, IHouse). /* true */
message 'type-of InsulatedHouse? ' type-of(oMyHouse, InsulatedHouse). /* false */
message 'TypeName ' oMyHouse :GetClass():TypeName. /* HeatPumpHouse */

Accessing other capabilities

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

define variable oMyHouse as IHouse no-undo.

/* Base house (the one to decorate) */
oMyHouse = new BasicHouse().

/* And a Heat Pump */
oMyHouse = new HeatPumpHouse(oMyHouse).

/* Add Insulation */
oMyHouse = new InsulatedHouse(oMyHouse).

/* It's still an IHouse instance */
oMyHouse:GetEndEnergyConsumption(). // 5000w

message cast(oMyHouse, InsulatedHouse):RValue. /* 40 */

message 'type-of IHouse? ' type-of(oMyHouse, IHouse). /* true */
message 'type-of InsulatedHouse? ' type-of(oMyHouse, InsulatedHouse). /* true*/
message 'TypeName ' oMyHouse :GetClass():TypeName. /* InsulatedHouse */

Accessing other capabilities

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Using the Adapter Pattern

▪ Can't rely on TYPE-OF() or Progress.Lang.Class:IsA() since we

are dealing with >1 class

▪ TYPE-OF() will tell only us the outermost layer of the onion … we need to

inspect all of the layers somehow

The adapter pattern is a software design pattern (also known as wrapper, an

alternative naming shared with the decorator pattern) that allows the

interface of an existing class to be used as another interface

https://en.wikipedia.org/wiki/Adapter_pattern

https://en.wikipedia.org/wiki/Adapter_pattern

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Implement OpenEdge.Core.IAdaptable
class HouseDecorator
 abstract
 implements IHouse,
 OpenEdge.Core.IAdaptable :

 method public Progress.Lang.Object GetAdapter(pAdaptTo as Progress.Lang.Class):
 /* Does the current decorator implement or inherit from the requested type? */
 if this-object:GetClass():IsA(pAdaptTo) then
 return this-object.

 if valid-object(oDecoratedHouse) then do:
 /* Does the decorated house implement or inherit the requested type? */
 if oDecoratedHouse:GetClass():IsA(pAdaptTo) then
 return oDecoratedHouse.

 /* Is the decorated house itself an Adapter? */
 if type-of(oDecoratedHouse, OpenEdge.Core.IAdaptable) then
 return cast(oDecoratedHouse, OpenEdge.Core.IAdaptable):GetAdapter(pAdaptTo).
 end.

 return ?.
 end method.

end class.

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

define variable oAdapter as Progress.Lang.Object no-undo.
define variable oMyHouse as IHouse no-undo.

/* Base house (the one to decorate) */
oMyHouse = new BasicHouse().

/* Add Insulation */
oMyHouse = new InsulatedHouse(oMyHouse).

/* And a Heat Pump */
oMyHouse = new HeatPumpHouse(oMyHouse).

/* It's still an IHouse instance */
oMyHouse:GetEndEnergyConsumption(). // 5000w

message 'type-of IHouse? ' type-of(oMyHouse, IHouse). /* type-of IHouse? true */
message 'TypeName ' oMyHouse :GetClass():TypeName. /* TypeName HeatPumpHouse */

if type-of(oMyHouse, IAdaptable) then do:
 oAdapter = cast(oMyHouse, IAdaptable):GetAdapter(get-class(InsulatedHouse)).
 if valid-object(oAdapter) then
 message cast(oAdapter, InsulatedHouse):RValue. /* works! */
end.

Accessing other capabilities via an adapter

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Demo

▪ Run-adapter.p

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Conclusion

▪ Decorator pattern allows us to dynamically (ie at runtime) add
behaviour to objects

▪ Streamline complex object hierarchies when using multiple interfaces

▪ Construction of decorated objects can be verbose (hint: come and see the
"Factories" session

▪ The adapter pattern allows us to ask an object what it is capable of
doing

▪ … and lets us ignore how that's implemented in the object (inheritance or
decorator or …)

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Additional info

▪ Code shown today is available at https://github.com/4gl-fanatics/house-

energy-patterns

▪ The Using the Factory Pattern in OOABL: How, when and why session

is on Tuesday, 14 Nov / 16:40. Come see how we improve building of

these decorated objects

https://github.com/4gl-fanatics/house-energy-patterns
https://github.com/4gl-fanatics/house-energy-patterns

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 26

peter.judge@consultingwerk.com

Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 27

	Slide 1: Implementing and using the Decorator pattern in ABL
	Slide 2: Peter Judge
	Slide 3: Consultingwerk Software Services Ltd.
	Slide 4: Services Portfolio, Progress Software
	Slide 5: Services Portfolio, related products
	Slide 6: Agenda
	Slide 7: Example
	Slide 8: Implementation Options
	Slide 9: Software Design Patterns
	Slide 10: Software Design Patterns
	Slide 11: Decorator pattern
	Slide 12: Decorator pattern
	Slide 13: Implementing the Decorator pattern
	Slide 14: Abstract HouseDecorator
	Slide 15: Concrete HouseDecorator
	Slide 16: Building objects
	Slide 17: Demo – Decorators,
	Slide 18: Accessing other capabilities
	Slide 19: Accessing other capabilities
	Slide 20: Using the Adapter Pattern
	Slide 21: Implement OpenEdge.Core.IAdaptable
	Slide 22: Accessing other capabilities via an adapter
	Slide 23: Demo
	Slide 24: Conclusion
	Slide 25: Additional info
	Slide 26
	Slide 27

