
Using the Factory Pattern in 

OOABL: How, when and why



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Peter Judge

▪ Senior Architect at Consultingwerk

▪ Writing 4GL since 1996, working on a variety 

of frameworks and applications. More 

recently have worked on a lot of integration-y 

stuff: Authentication Gateway, HTTP Client, 

Web Handlers. Dabble in PASOE migrations.

▪ Active participator in Progress communities, 

PUGs and other events

2



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Consultingwerk Software Services Ltd.

▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK, USA and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture, 

Application Integration

▪ Experts in OpenEdge Application Modernization

3



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, Progress Software

▪ OpenEdge (ABL, Developer Tools, Database, PASOE, …)

▪ Telerik DevCraft (.NET, Kendo UI, Angular, …), Telerik Reporting

▪ OpenEdge UltraControls (Infragistics .NET)

▪ Telerik Sitefinity CMS (incl. integration with OpenEdge applications)

▪ Kinvey Plattform, NativeScript

▪ Corticon BRMS

▪ Whatsup Gold infrastructure-, network- and application monitoring

▪ Kemp Loadmaster

▪ …

4



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Services Portfolio, related products

▪ Protop Database Monitoring

▪ Combit List & Label

▪ Web frameworks, e.g. Angular

▪ .NET

▪ Java

▪ ElasticSearch, Lucene

▪ Amazon AWS, Azure 

▪ DevOps, Docker, Jenkins, ANT, Gradle, JIRA, …

▪ …

5



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Recap from yesterday

▪ Patterns in general

▪ Decorator pattern

6



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Software Design Patterns

▪ Well known “ways of doing”, solving common, reoccurring problems

▪ Easier to understand und maintain clean code

▪ Prevents reinventing the wheel and “too creative” code



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Decorator pattern

▪ Allows functionality to be divided by concern (Single Responsibility)

▪ Allows extension without modification (Open Closed Principle)

▪ This is the actual decoration

▪ Flexible, efficient way of extending an object without creating a new

object

▪ No Casting, Extending or Overwrites needed



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Decorator pattern

▪ Interface, Decorator(s), Decorated

▪ Decorator implements Interface of the class to be decorated

▪ Decorator holds reference to the decorated object (Wrapper)



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Software Design Patterns

▪ Popular through the GoF (Gang of Four)
▪ Erich Gamma (IBM/Rational/Microsoft – Developer of Eclipse, Junit and VS Code)

▪ Richard Helm (IBM/Boston Consulting)

▪ Ralph Johnson (worked on Smalltalk)

▪ John Vlissides (IBM)

▪ Examples: Factory, Builder, Singleton, Facade, Adapter, Iterator, Lazy 

Initialization, and many more….



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Agenda

▪ Example

▪ Factory patterns

▪ Fluent Interface

▪ Examples



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Example

▪ We want to a class to represent a House

…and want to know how much Energy it consumes over the year

▪ How does that change if we change something on the house?

▪ We want to change that at Runtime!

▪ Not at compile time

▪ Houses may have solar panels, insulation, a battery, heat pumps, etc

▪ Not all houses have all of these

▪ Some houses may have multiple

▪ Capabilities can be upgraded over the lifetime of a house



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

How do we specify the capabilities?

▪ Constructor arguments

▪ Does allow required values to be set

▪ Optional values may be set

▪ Can end up with vary many constructors, with very many parameter 
combinations

▪ Can end up with overly-broad constructors, with too many parameters for the 
required capabilities

Which constructor is a developer supposed to call?

▪ Settable properties, public methods

▪ Caller must somehow know that they are supposed to call these



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Bad Example
oHouse = NEW ClassWithUglyConstructor(FALSE, 

                   FALSE,

                   "", 

                   5, 

                   12.0, 

                   6, 

                   TRUE, 

                   NOW, 

                   5, 

                   6, 

                   "WTF", 

                   FALSE, 

                   FALSE).

▪ Constructor arguments

▪ Not really comprehensive (What do the values given 

mean, and why?)

▪ Intellisense or documentation can help decipher their 

purpose

▪ Need a parameter more for some processing inside the 

class?

▪ New Constructor with meaningful default values

▪ Change all code pieces that used the old one



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

The Old MacDonald approach

… A new-new here, a new-new there, here a new, there a new, everywhere a 
new-new …

▪ What happens if you need to add mandatory data to the class?

▪ Use sensible defaults

▪ New subtype

▪ Typically results in changes to existing NEWs

 You have how many?

There should be only one place responsible for the creation of 
object for a type or family of types



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Introducing Factories & Builders

▪ Abstract factory Provide an interface for creating families of related or 

dependent objects without specifying their concrete classes

▪ Builder Separate the construction of a complex object from its 

representation, allowing the same construction process to create 

various representations

▪ Factory method Define an interface for creating a single object, but let 

subclasses decide which class to instantiate. Factory Method lets a 

class defer instantiation to subclasses

https://en.wikipedia.org/wiki/Abstract_factory_pattern

https://en.wikipedia.org/wiki/Builder_pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Factory_method_pattern
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Factory_method_pattern


Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Factories & builders
class HouseBuilder abstract implements IHouseBuilder :

  define public property House as IHouse no-undo

 get():

    /* Abstract method, supports overriding pre-12.5 */

   return this-object:GetInstance().

 end get.

 method abstract protected IHouse GetInstance().

  method static public IHouseBuilder Build (pcCategory as character):

   case pcCategory:

    when "modern" then return new ModernHouseBuilder().

   when "basic"  then return new BasicHouseBuilder().

   otherwise          return new DefaultHouseBuilder().

  end case.

 end method.

Abstract factory

Factory method

Concrete builders



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Abstract Factory

interface IHouseBuilder:

  define public property House as IHouse no-undo
  get.

  method public void AddInsulation(plInsulation as logical).

  method public void AddHeatPump(plHeatPump as logical).

  method public void AddSolar(plSolar as logical).

end interface.

Specify desired 

capabilities



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

class HouseBuilder abstract implements IHouseBuilder :

    /* Removed Factory method, static Build() method to fit on the slide :) */

  define protected variable lHasHeatPump as logical no-undo.
  define protected variable lHasInsulation as logical no-undo.
  define protected variable lHasSolar as logical no-undo.

  method public void AddHeatPump( input plHeatPump as logical ):

    lHasHeatPump = plHeatPump.

  end method.

  method public void AddInsulation( input plInsulation as logical ):

    lHasInsulation = plInsulation.

  end method.

  method public void AddSolar( input plSolar as logical ):

    lHasSolar = plSolar.

  end method.

Abstract factory : example

▪ The variables store  

the desired 

capabilities for use 

by the builder 

classes

… could be a temp-

table, JSON object or 

other more complex 

data structure



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Demo – Abstract Factory & Builders



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Fluent interface

A fluent interface is an object-oriented API whose design relies extensively on 

method chaining. Its goal is to increase code legibility by creating a domain-

specific language (DSL).

https://en.wikipedia.org/wiki/Fluent_interface 

using OpenEdge.Net.HTTP.*.

define variable oRequest as IHttpRequest no-undo.

oRequest = RequestBuilder:Post("https://example.com/", oJsonData )
                  :ContentType( "application/json" )
                  :AcceptJson()
   :SetHeader("X-API-Key", "abc123")
        :Request.

https://en.wikipedia.org/wiki/Fluent_interface
https://en.wikipedia.org/wiki/Fluent_interface


Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

INTERFACE IFluentHouseBuilder:
  
  METHOD PUBLIC IFluentHouseBuilder AddInsulation(plInsulation AS LOGICAL).   
  METHOD PUBLIC IFluentHouseBuilder AddHeatPump(plHeatPump AS LOGICAL).   
  METHOD PUBLIC IFluentHouseBuilder AddSolar(plSolar AS LOGICAL).
  
  DEFINE PUBLIC PROPERTY House AS IHouse NO-UNDO
  GET.
END INTERFACE.

Enabling a fluent interface

CLASS FluentHouseBuilder IMPLEMENTS IFluentHouseBuilder:

  METHOD PUBLIC IFluentHouseBuilder AddHeatPump( plHeatPump AS logical ):

   lHasHeatPump = plHeatPump.
  RETURN THIS-OBJECT.

  END METHOD.



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Fluent interface: example

DEFINE VARIABLE oHouse AS IHouse.

// Insulated house with heat pump
oHouse = FluentHouseBuilder:Build()

             :AddInsulation(TRUE)
             :AddHeatPump(TRUE)

             :House.



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Builders

▪ The factory aspects represent the logical view of what's being built; 

builders create a physical representation of that view

▪ Builders are the key to extensibility, flexibility

▪ Some form of extensible configuration specifying them is important

E.g config file, Service Manager, class registry

method static public IHouseBuilder Build (pcCategory as character):

   case pcCategory:

    when "modern" then return new ModernHouseBuilder().

   when "basic"  then return new BasicHouseBuilder().

   otherwise          return new DefaultHouseBuilder().

  end case.

 end method.



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Demo

▪ Builders

▪ Fluent interface



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Conclusion

▪ Never write a NEW again! Factories and builders give us a single-

responsibility class for instantiating objects

▪ Application developers don't need to think about any complexities of 

constructing objects

▪ For maximum effect, they should have configurable builders

… via  configuration file or class registries



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved.

Additional info

▪ Code shown today is available at https://github.com/4gl-fanatics/house-

energy-patterns 

▪ The Implementing and using the Decorator pattern in ABL session 

was is on Monday 13 Nov at 17:00. Come see where the requirements 

for building complex objects comes from (or download the slides after 

the conference).

https://github.com/4gl-fanatics/house-energy-patterns
https://github.com/4gl-fanatics/house-energy-patterns


Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 28

peter.judge@consultingwerk.com



Übersicht

© 2023 Consultingwerk Software Services Ltd. All rights reserved. 29


	Slide 1: Using the Factory Pattern in OOABL: How, when and why
	Slide 2: Peter Judge
	Slide 3: Consultingwerk Software Services Ltd.
	Slide 4: Services Portfolio, Progress Software
	Slide 5: Services Portfolio, related products
	Slide 6: Recap from yesterday
	Slide 7: Software Design Patterns
	Slide 8: Decorator pattern
	Slide 9: Decorator pattern
	Slide 10: Software Design Patterns
	Slide 11: Agenda
	Slide 12: Example
	Slide 13: How do we specify the capabilities?
	Slide 14: Bad Example
	Slide 15: The Old MacDonald approach
	Slide 16: Introducing Factories & Builders
	Slide 17: Factories & builders
	Slide 18: Abstract Factory
	Slide 19: Abstract factory : example
	Slide 20: Demo – Abstract Factory & Builders
	Slide 21: Fluent interface
	Slide 22: Enabling a fluent interface
	Slide 23: Fluent interface: example
	Slide 24: Builders
	Slide 25: Demo
	Slide 26: Conclusion
	Slide 27: Additional info
	Slide 28
	Slide 29

